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Localization in Highly Anisotropic Systems
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The localization behavior of the Anderson model with anisotropic hopping integralt for weakly
coupled planes and weakly coupled chains is investigated both numerically with the transfer
method and analytically within the self-consistent theory of localization. It is found that the mo
edge is independent of the propagating direction. However, the correlation (localization) len
the extended (localized) side of the transition can be very different for the two directions.
critical disorderWc is found to vary fromt1y4 for weakly coupled planes tot1y2 for weakly coupled
chains. [S0031-9007(96)00089-0]
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The problem of Anderson localization in anisotrop
systems has attracted considerable attention [1–5] in
cent years, largely due to the fact that the high-Tc su-
perconductors are highly anisotropic. Transport in
normal state is metallic in thea-b plane but appears sem
conductorlike in thec axis [6]. The nature of thec-axis
transport in high-Tc materials is still controversial an
its understanding may have important consequences
the theories of the normal and the superconducting sta
This paradoxical property has prompted the proposal
that a high-Tc material in the normal state is actually a
insulator, appearing metallic only because the inela
length in the plane is less than the localization length.
has also been argued [2,6] that a negativedrydT in thec
direction alone may signify anisotropic localization, wi
a metal-insulator transition depending on the propaga
direction, in direct contradiction to the predictions of t
scaling theory of localization [8]. A recent diagramma
calculation [1] lent support to such a claim. Previo
diagrammatic analysis [9], however, led to the conclus
that the scaling property in anisotropic systems rema
the same as that of the isotropic systems with a sim
substitution of the conductance by its geometric me
Given the perturbative nature of all the previous wo
it is important to carefully study the localization behav
of disordered anisotropic systems with reliable numer
techniques and to determine whether the scaling theo
valid for high anisotropic systems [8–10].

In the present work, we have systematically stud
the localization properties of a three-dimensional dis
dered anisotropic system described by a tight-bind
Hamiltonian with random on-site energies and anisotro
hopping integrals. We calculate numerically both the c
ductance and the localization length of such systems
the transfer-matrix method [8]. By doing finite-size sc
ing analysis on sufficiently large systems, we find
metal-insulator transition occurs at the same critical d
order Wc in all directions. Remarkably, at criticality
the geometric mean of the ratio of the finite-size loca
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zation length to the width of the bar is independent
the anisotropy. This underlies the conformal invarian
property at the Anderson transition. For systems with
tremely weak plane coupling, the critical disorderWc is
found to vary with anisotropyt as t1y4, in good agree-
ment with a self-consistent theory of localization. How
ever, the correlation lengths in the extended regime,
well as the localization lengths in the localized regim
differ tremendously in different directions. As we wi
discuss later, this difference of the correlation lengths
the propagating directions may explain thec-axis trans-
port of the high-Tc materials. The localization behavio
of weakly coupled disordered chains, which simulate
1D-to-3D behavior, is also studied. The critical disord
Wc is found to behave ast1y2.

We study the following Hamiltonian for an anisotrop
3D disordered model:

H ­
X
n

enjn , nj 1
X
n,m

tnmjn , mj , (1)

where the siteshnj form a regular cubic lattice. The
hopping integrals are nonzero between nearest-neigh
sites only and depend on directions, in general,tx fi ty fi

tz. We normalize all energies by the largest hoppi
integral. For systems with weak plane coupling, t
hopping integrals are given byh1, 1, tj. As a convention,
we have assigned the direction with the large and sm
hopping integral as the parallelskd and the perpendicula
s'd directions, respectively. Disorder is introduced b
randomly choosing site energiesen within f2Wy2, Wy2g.

The metal or insulating nature of the Anderson Ham
tonian, Eq. (1), can be determined by investigating
scaling properties of either the conductance or the
calization length of finite systems calculated from t
transfer-matrix techniques [8,11]. The conductanceG of
an M 3 M 3 M cube is calculated from the multichan
nel Landauer formula [12]

GsMd ­ se2yhdTrsT1T d , (2)
© 1996 The American Physical Society
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where T is the transmission matrix. For the localiza
tion length calculation, one considers a bar of lengthN
and cross sectionM 3 M. One determines the larges
localization length lM as N ! ` from the smallest
Lyapunov coefficient of the product of the random tran
fer matrices. From a plot oflMyM (or G) vs M, one
can determine the localization properties of the syste
For localized statessW . Wcd the ratio lMyM (or G)
is expected to fall with increasingM, while for extended
statessW , Wcd lMyM (or G) should rise instead. At
the mobility edge trajectorysW ­ Wcd, lMyM (or G) is
independent ofM and this behavior defines the Anderso
transition point and the critical disorderW ­ Wc. In our
calculations, we have used systems withM ­ 5 17 and
N was at least 5000. For the conductance calculationsM
was up to 22. Because of the non-self-averaging na
of finite-size systems, an average over many random c
figurations (up to 500 for theM ­ 20 case) must be taken
to suppress the large fluctuations.

In Fig. 1, we present our numerical results for the d
mensionless conductanceg ­ Gyse2yhd and the scaled
localization lengthlMyM vs M at E ­ 0 for the case
of weakly coupled planes with coupling constantt ­ 0.1,
for both the perpendicular (lower panels) and parallel (u
per panels) directions. These results strongly suggest
for sufficiently largeM the critical disorded defined by a
M independentg andlMyM converges to the same valu
Wc . 8.4, for both propagating directions. Notice that
only sizesM # 11 were used, which are appropriate
the isotropic case, one would then have erroneously c
cluded thatWk

c . W'
c . Another important point is tha

the value oflMyM at W ­ Wc, calledLc, is different in
the two propagating directions. We find thatL'

c ­ tLk
c

for all the t’s we have examined. The critical condu

FIG. 1. The conductanceg (a),(b) andlM yM (c),(d) plotted
as a function ofM for E ­ 0, t ­ 0.1, and various values of
disorderW , for both propagating directions. The mobility edg
is at Wc . 8.4 for both propagating directions.
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tance in the two directions att ­ 0.1 is approximately
g'

c . 1026gk
c. This is a much stronger variation than t

g' . t2gk predicted by the diagrammatic analysis [9]
the anisotropic model. This may be an indication of
existence of high order corrections to the conductivity t
is not simply proportional to the bare conductivity. Th
point needs further study.

In order to extrapolate to infinite system sizesM ! `d,
it is necessary to investigate the scaling behavior
lMyM. In the center of the bandsE ­ 0d and close
enough to the transition point, it turned out to be poss
to establish a scaling function for both propagat
directions within the accuracy of our numerical resu
The scaling functionfsxd behaves as1yx in the x !

0 limit for extended states [while for localized stat
fsxd , x]. For x ! `, fsxd approaches a constant val
that depends on the propagating direction. Fort ­ 0.1,
we obtainedLk

c ­ 1.2 and L'
c ­ 0.12. This suggests

that L'
c ­ tLk

c for generalt. We have, indeed, checke
that this formula is correct for anyt. Another important
relation we were able to obtain is the geometric me
of the different critical valueslMyM in the different
directions is independent of the anisotropyt. We derived

sLx
cLy

cLz
cd1y3 ­ 0.6 . (3)

In the case of weakly coupled planes, Eq. (2) becom
fsLk

cd2L'
c g1y3 . 0.6. This relation may have importan

consequences for the existence of conformal invaria
at the critical point of the Anderson localization pro
lem [13,14].

In Fig. 2, we plot the localization lengthLc and
the correlation lengthj as a function ofW for E ­
0 and t ­ 0.1 for the parallel and the perpendicul
directions. BothLc andj diverge at the critical disorde
Wc. However, bothj and Lc differ substantially for

FIG. 2. Localization lengthLc or correlation lengthj, ob-
tained by finite size scaling, as a function of disorderW for
E ­ 0 and t ­ 0.1, for the parallel and perpendicular prop
gating directions. Notice that forW , Wc . 8.4, j' . jk,
while for W . Wc , Lk

c . L'
c .
3615
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the different propagating directions. In particular,
the extended regime whereW , Wc, j' . jk. For
example, atW ­ 5, j' ­ 100, and jk . 1.5, in units
of the lattice constant, which has been taken to
1. In the localized regime whereW . Wc, Lk

c . L'
c .

For example, atW ­ 10, Lk
c ­ 55, and L'

c . 5. Our
numerical results approximately follow the theoretic
prediction [9] jk ­ t2j' and L'

c ­ tLk
c. However, the

exponents are expected to be the same and this has
confirmed from our calculations. We find thatn' ­
1.3 6 0.1 and nk ­ 1.3 6 0.3, in agreement with each
other and withn ­ 1.3 6 0.1 for the isotropic system
within the numerical accuracy.

The difference betweenjk and j' is very important
and can possibly explain the normal state transp
properties [6] of the high-Tc materials. The correlation
length j measures the strength of the fluctuations of
wave functions in the extended regime. For length sca
larger thanj, the wave function looks uniform, while fo
length scales smaller thanj, the wave function has stron
fluctuations. The relevant length scale is the inelas
mean free pathlin which behaves asT2p, with probably
p ­ 1y2. Whenlin , j, a phenomenon called incipien
localization takes place and conductivity is controlled
lin. A convenient interpolation formula [15] valid in th
conducting regime is given by

sloc ­ se2yh̄dsayj 1 bylind , (4)

where a and b are constants of order unity [16]. Fo
high enough temperatures the conductivity is given
the regular metallic behavior, wheresph ­ v2

pty4p and
the mean free timet , T 21. Becausesph and sloc

describe independent physical processes, we can ad
corresponding resistivities. Thereforer ­ rloc 1 rph

wherer ­ 1ys. The experimental behavior of the high
Tc materials can be understood if we assume that the h
Tc oxides, instead of being insulators [7], are disorde
anisotropic metals with a large anisotropic correlati
length. At low T , the resistivity is dominated byrloc.
Once lin becomes shorter thanj in the perpendicular
direction (c direction), j', Eq. (4) suggests that ther
is a sharp downturn in the perpendicular resistivity
the temperature increases. This trend will eventua
stop at someT when the regular resistivity begins t
dominate. Thenr' will start increasing linearly with
T , as in the regular metallic behavior. In the paral
direction, jk is always smaller than the inelastic leng
and the transport in the plane remains metallic. The ab
analysis neglects corrections and dynamic disorder
could also substantially affect the transport properties

The dependence ofWc on the anisotropyt for the
weak plane coupling has been also numerically calcula
by the transfer-matrix technique. The numerical valu
of Wc can be fitted well with a single power law
dependenceWc ­ 15.4t1y2, for t , 0.8. This is clearly
seen in Fig. 3. This dependence is in marked cont
3616
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FIG. 3. The critical disorderWc for obtaining localized states
at E ­ 0 vs the anisotropyt.

to what one would expect based on reasonable heur
argument [17] and also predicted previously by mo
elaborate theories [1,4] which give a much weakert
dependence,Wc , 1y

p
j lntj. The t dependence is also

different from the results obtained for the weakly coupl
chains [18], which giveWc , t1y2. To understand the
t1y4 dependence ofWc, we examine the localization
transition starting from the results of the diagramma
analysis [9]. The maximally crossed diagrams produc
a correction [4] to the zero-temperature configurationa
average conductivitysi0 si ­ x, y, zd of the form given
in Eq. (2.3a) of Ref. [4]. An equivalent criterion in
the tight-binding representation for the mobility edge
given by Eq. (2.5) of Ref. [4]. For the anisotropic ca
we made the choice that the effective lattice const
ai is proportional to the anisotropic mean free pathli:
li , sky2

k ld1y2t ­ fkyl ky2
i yylg1y2t, i.e., we assume tha

t is isotropic. Sincesi0ya2
i is independent ofi, the

localization criterion is satisfied simultaneously in all th
directions and can be written as

p h̄Vsi0

2e2a2
i

­
1

s2pd3

Z
d $q

1P3
i­1s2 2 2 cosqid

­ Gis
3DsE ­ 6d , (5)

whereV ­ P
3
i­1ai andGis

3DsE ­ 6d ­ 0.505 462 is the
3D Green’s function of the isotropic system at the ba
edge [19]. Notice the same equation applies to
isotropic case except now both the conductivity and
mean free path enter as geometric means.

In the limit of weak couplingt ! 0, Eq. (5) yields
t , t21y2 for weakly coupled planes andt , t21 for
weakly coupled chains [20], and thereforeWc (taking into
account thatt , W22) is proportional tot1y4 andt1y2, re-
spectively, in agreement with the transfer-matrix meth
results. We have systematically calculated [20]Wc vs t,
for generalt, within the coherent potential approximatio
(CPA), by using Eq. (5). There is quantitative agreem
between the CPA and the transfer-matrix results. We f
the choice of the effective lattice constantai being pro-
portional to an anisotropic mean free pathli is the proper
one and the good agreement with our numerical res
further supports this.
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In summary, we have numerically studied, by t
transfer-matrix method technique, the localization pr
erties of weakly coupled planes. We found that only o
mobility edge exists for both propagation directions, i
the states in the planar direction become localized with
actly the same amount of disorder as the states in the
pendicular direction. However, the correlation lengthj in
the extended side of the transition, as well as the local
tion length in the localized side, can be very different
the two propagating directions. This behavior ofj can
possibly explain the transport properties of high-Tc ma-
terials. The critical value of disorderWc is proportional
to t1y4 for weakly coupled planes and is proportional
t1y2 for weakly coupled chains. These results are fou
to be in satisfactory agreement with the predictions of
self-consistent theory of localization which incorpora
the idea of length scale rescaling. However, the cond
tance in different directions does not satisfy the relat
predicted by the diagrammatic analysis [9]. Work to fu
ther understand the scaling properties of the conducta
is in progress.
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